
Explainable AI for systems with functional safety requirements
Explainable AI (XAI) is vital for making AI decision-making processes transparent and understandable to human experts, and for ensuring safety and regulatory compliance.

Application of the ALTAI tool to power grids, railway network and air traffic management
This document presents the responses from industry (operators of critical infrastructures) to the Assessment List for Trustworthy AI (ALTAI) questionnaire for three domains and specific use cases: power grid, railway network, and air traffic manag

Uncertainty-Based Learning of a Lightweight Model for Multimodal Emotion Recognition
In this paper, the authors propose a lightweight neural network architecture that extracts and performs the analysis of multimodal information using the same audio and visual networks across multiple temporal segments.

CO2A – Contrastive Conditional domain Alignment
A novel unsupervised domain adaptation approach for action recognition from videos, inspired by recent literature on contrastive learning.

pygrank
pygrank is an open source framework to define, run and evaluate node ranking algorithms.

InDistill
InDistill enchances the effectiveness of the Knowledge Distillation procedure by leveraging the properties of channel pruning to both reduce the capacity gap between the models and retain the information geometry.