
Explainable AI for systems with functional safety requirements
Explainable AI (XAI) is vital for making AI decision-making processes transparent and understandable to human experts, and for ensuring safety and regulatory compliance.

Application of the ALTAI tool to power grids, railway network and air traffic management
This document presents the responses from industry (operators of critical infrastructures) to the Assessment List for Trustworthy AI (ALTAI) questionnaire for three domains and specific use cases: power grid, railway network, and air traffic manag

Holistic framework for AI in critical network infrastructures
This document establishes the main foundations of the AI4REALNET project, in particular, the following key outcomes: - The formal specification of domain-specific use cases (UCs), replicating real-world operating scenarios involving human operator

Towards functional safety management for AI-based critical systems
The webinar provides attendees with a comprehensive understanding of the challenges and opportunities associated with integrating AI into safety-critical systems.

Position paper on AI for the operation of critical energy and mobility network infrastructures
This position paper outlines AI4REALNET’s approach to applying AI in network infrastructure operations, translating application needs into algorithmic proposals for effective human-AI collaboration in decision-making processes.

I-AR project
The project aimed to implement fair automatic recognition by offering guidance in policy development on an European and national level.