
Webinar "Towards Transparent, Safe and Trustworthy AI for critical infrastructures"
This webinar focuses on the development of safe, explainable, and algorithmically transparent methods as part of the AI4REALNET project.

Webinar: Knowledge-Assisted AI Applications for Real-World Network Infrastructure
This webinar showcases how the AI4REALNET project is driving innovation in critical infrastructure through advanced AI applications.

Holistic framework for AI in critical network infrastructures
This document establishes the main foundations of the AI4REALNET project, in particular, the following key outcomes: - The formal specification of domain-specific use cases (UCs), replicating real-world operating scenarios involving human operator

Decentralized-gnn
A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes.

PandA: Unsupervised learning of parts and appearances in the feature maps of GANs
We propose an architecture-agnostic approach that jointly discovers factors representing spatial parts and their appearances in an entirely unsupervised fashion.

OzoBot
Ozobot is redefining the role of robotics in education with our award-winning coding robots and STEAM-based learning solutions.