Structured Power Grid Simulation Dataset for Machine Learning: Failure and Survival Events in Grid2Op's L2RPN WCCI 2022 Environment
This dataset was developed for and used in the paper titled "Fault Detection for Agents in Power Grid Topology Optimization: A Comprehensive Analysis" by Malte Lehna, Mohamed Hassouna, Dmitry Degtyar, Sven Tomforde, and Christoph Scholz,

Webinar "Industry-driven Use Cases"
AI4REALNET project covers the perspective of AI-based solutions addressing critical systems (electricity, railway, and air traffic control), modelled by networks that can be simulated and traditionally operated by humans and where AI complements a

Webinar "Distributed and Hierarchical Reinforcement Learning"
In this webinar, AI4REALNET project provides an overview of two emerging topics in Reinforcement Learning (RL): Distributed RL and Hierarchical RL.

Holistic framework for AI in critical network infrastructures
This document establishes the main foundations of the AI4REALNET project, in particular, the following key outcomes: - The formal specification of domain-specific use cases (UCs), replicating real-world operating scenarios involving human operator

The Mechanics of Context-Aware Decision-Making Using AI
Blog post on AI, Cognition and Decision-making

Real-Time Context-Aware Microservice Architecture for Predictive Analytics and Smart Decision-Making
This paper aims at proposing a scalable architecture to provide real-time context-aware actions based on predictive streaming processing of data as an evolution of a previously provided event-driven service-oriented architecture which already perm