
Webinar "Industry-driven Use Cases"
AI4REALNET project covers the perspective of AI-based solutions addressing critical systems (electricity, railway, and air traffic control), modelled by networks that can be simulated and traditionally operated by humans and where AI complements a

Holistic framework for AI in critical network infrastructures
This document establishes the main foundations of the AI4REALNET project, in particular, the following key outcomes: - The formal specification of domain-specific use cases (UCs), replicating real-world operating scenarios involving human operator

100-Driver: A Large-scale, Diverse Dataset for Distracted Driver Classification
A large-scale, diverse posture-based distracted diver dataset, with more than 470K images taken by 4 cameras observing 100 drivers over 79 hours from 5 vehicles.

SAFEXPLAIN Introduction to Trustworthy AI for Safety-Critical Systems
This introductory video provides an overview of the steps taken by the SAFEXPLAIN project to ensure that the AI-based solutions used in safety-critical systems are Trustworthy, explainable and comply with the safety guidelines of diverse industria