
Webinar "Industry-driven Use Cases"
AI4REALNET project covers the perspective of AI-based solutions addressing critical systems (electricity, railway, and air traffic control), modelled by networks that can be simulated and traditionally operated by humans and where AI complements a

Report on meta-analysis on externalities of acceptability and trustworthiness of ADR
This Adra-e deliverable presents an analysis of the externalities surrounding acceptability and trustworthiness in ADR-supported innovative technologies.

100-Driver: A Large-scale, Diverse Dataset for Distracted Driver Classification
A large-scale, diverse posture-based distracted diver dataset, with more than 470K images taken by 4 cameras observing 100 drivers over 79 hours from 5 vehicles.

Designing a Rights-Based Global Index on Responsible AI
A frameworks have been developed that set out core ethical principles to be upheld as the technology is designed, developed, used, and evaluated.

SAFEXPLAIN Introduction to Trustworthy AI for Safety-Critical Systems
This introductory video provides an overview of the steps taken by the SAFEXPLAIN project to ensure that the AI-based solutions used in safety-critical systems are Trustworthy, explainable and comply with the safety guidelines of diverse industria

Designing a Rights-Based Global Index on Responsible AI
A frameworks have been developed that set out core ethical principles to be upheld as the technology is designed, developed, used, and evaluated.