

Accélérateur de la transformation numérique

A Digital Twin Approach for Sustainable Territories Planning: A Case Study of a French Suburb

Amira Ben Hamida

Amira.benhamida@irt-systemx.fr

https://www.irt-systemx.fr/en/

Leveraging data and Digital Twins for sustainable city

- > Complexity of energy planning in an urban environment
- Develop decision-making tools to support the <u>energy</u> <u>transition</u> in the city
- Leverage, manage, visualize and analyze large and heterogeneous data
- Support the design of **energy planning strategies**
- Play, evaluate and optimize energy planning scenarios by leveraging <u>Digital Twin</u> technology

Key steps in the energy planning process

Fusion, visualization and analysis of heterogeneous <u>data</u> <u>Step 2</u>

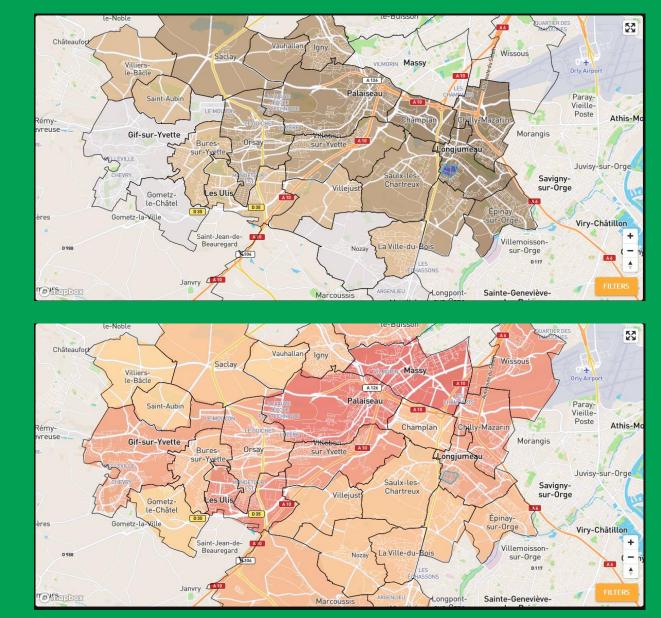
Evaluation and exploitation of <u>energy potential</u> in the city <u>Step 3</u>

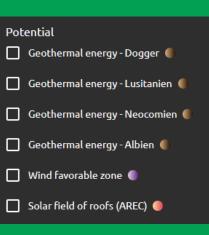
Zone identification and <u>contextual</u> <u>information</u> <u>Step 4</u>

Design of relevant <u>energy</u> <u>scenarios</u>

<u>Step 5</u>

Evaluation of candidate scenarios using <u>Digital twins</u>

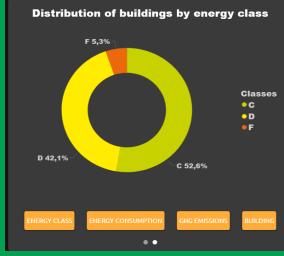

City data sets


Digital twin 53 DIS PERSAN COURTABCEUF A 10 MONDEROUR Zone d'Activités de Courtabœuf MONTJA R3 Carrefour Courtabœuf 9 ä Rue d Château de Montjay MONDÉTOUR п ŵ EE h L'Atelier Gourman ()mapbox, Networks Potential Consumption 🗌 Iris 🛛 🔲 Geothermal energy - Dogger 🌒 🔲 Gas networks 🔵 🔲 Heat consumption - roads 🌖 CPS ✓ Heat networks 🔲 Heat consumption - building 🌒 🔲 Geothermal energy - Lusitanien 🌒 Population density Electrical networks: cables 🔲 Geothermal energy - Neocomien 《 🗸 Cadastral plot 🌖 🔲 Geothermal energy - Albien 🌒 🔲 Electrical networks: substations 🧶 🔲 ZAC 🥚 🔲 Geothermal operations 🔴 🔲 Wind favorable zone 🌒 Electric charging stations Solar field of roofs (AREC) 🧶

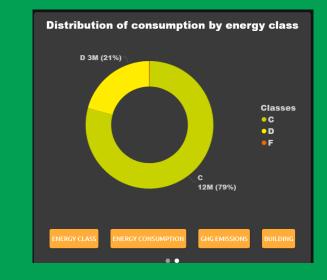
Fusion, visualization and analysis of heterogeneous data

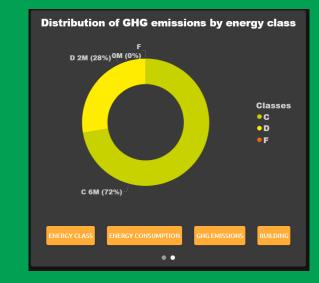
> Consumption Energy Production Land parcel data Energy networks EV charging Solar panels Planned projects

Energy potential



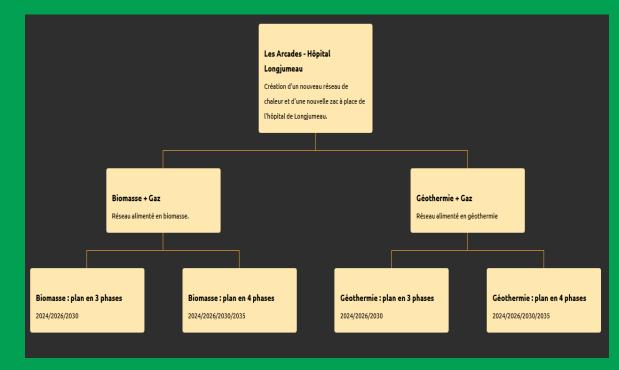
Evaluation and exploitation of energy potential


Data center heat recovery <u>Geothermal energy</u> Biomass <u>Solar (AREC)</u> Wind power


Selection of the area of interest and display of the corresponding contextual information

Design of planning scenarios

Creation and extension of heat networks


Building renovation

Recommendations

Exploitation local and renewable energies

Maximization of energy recovery

Energy planning scenarios and strategies

Settings of the alternative scenario

NETWORK CREATION	PRODUCTION SOURCES	NETWOR	CONNECTION R	ENOVATION RENEWABL	LES PRODUCTION ZA	AC CREATION				
Connection network	Priority	Controllable	Max power (in MWh)	Greenhouse gas rate (in kgCO2e/kWh)	Supply cost (in €/kWh)	Maintenance cost per month (in €)	Investment cost (in €)	Туре	Implementation date	
Reseau_Longjumeau_Le: 👻	1 🧪	Yes 👻	3 🧨	0,011	0,027	300 🧪	4000000	Geothermal 👻	2024 🧪	Ī
Reseau_Longjumeau_Le: 🔻	2 🧪	Yes 🔻	1,6 🧪	0,54	0,076	200	900000	Gas 👻	2024	
+										6

Energy consumption

Satisfaction

GHG emissions

Cost/Return on investment

Investment

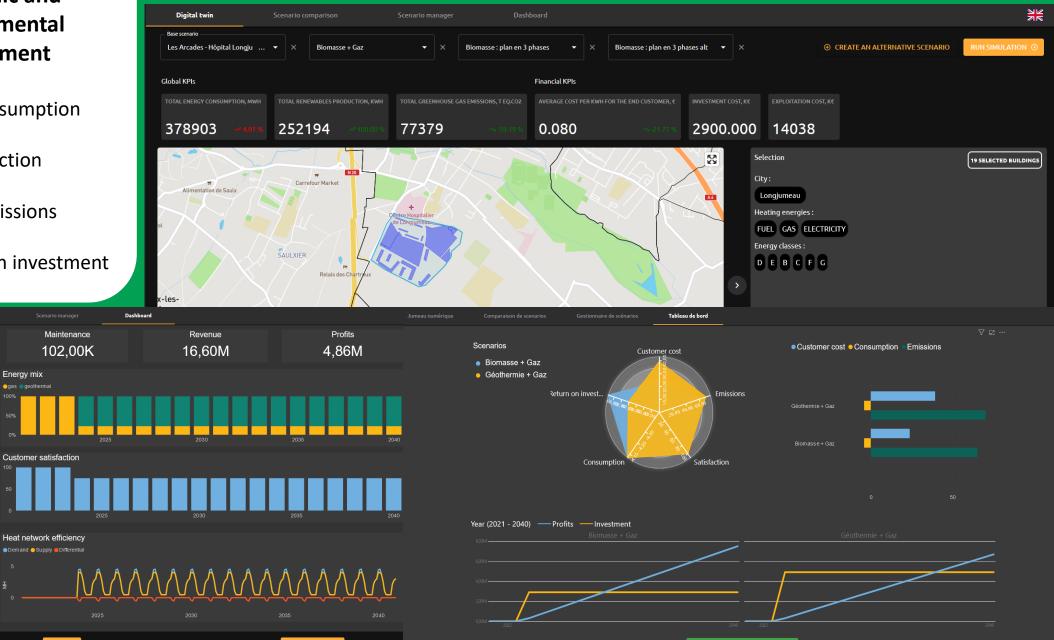
3,90M

Base (+0%) 1.86M

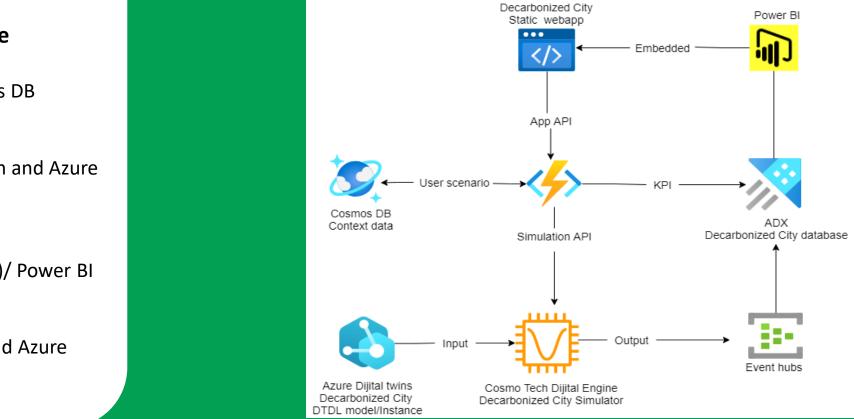
Scenario (-50.7%) 919K

> Base (+0%) 18.2M

Scenario (-2.2%) 17.8M


Scenario (-75.4%) 2.34M

Energy consumption (kwh)


GHG emissions (kg CO2 eq) Base (+0%) 9.48M

Customer cost

DT to evaluate the impacts of the scenarios

Technical architecture

Architecture

Storage: Cosmos DB

Simulation: Cosmo Tech and Azure Digital Twin

<u>GUI</u>: Javascript (REACT)/ Power BI

<u>Cloud</u>: Services cloud Azure

Conclusion and perspectives

- > Complexity of <u>energy planning</u> in an urban environment
- Develop decision-making tools to support the <u>energy</u> <u>transition</u> in the city
- District heating is a relevant means to mutualize the infrastructure, reduce the costs and supply the maximum number of users
- Leverage <u>data-driven optimization</u> approach to select the best scenario based on several criteria
- Adaptation and application of the approach for <u>different</u> <u>cities</u> and other <u>sustainable planning</u> use cases