

ADRA-e Impact of AI, Big Data and Robotics on CO2 reduction - Programme

#### **Zero Emissions for Sustainable Blue Economy**

#### Nabil Belbachir

Research Director, DARWIN @NORCE (Data, AI, Robotics, Vision) Director eu-robotics Aisbl

March 2023

NORCE Norwegian Research Centre AS

Passion for knowledge - together for sustainability



#### The global challenges

- Access to food (especially proteins) will be difficult by 2050.
  - Increasing world population 34% than today.
  - Decreasing amount of arable land.
- Climate challenges → green economy is required.
- Environmental challenges on health and wildlife → Waste management and <u>sustainability</u>.
- Energy demand → clean (renewable) energy.



#### Opportunities in the Ocean



# **Blue Economy** - 3T\$ Market **Growing at** double the rate of other sectors

March 2023



DNV

AI, Data and Robotics for autonomous O&M

忍 IN2 TrustAl

2030 Vision on Blue Economy (DNV GL): Energy, Aquaculture, Transport

# Multipurpose offshore platforms

#### Ocean is a sensitive fundament for Sustainabilty



Ocean is the world's greatest ally against climate change.

It generates 50 % of the oxygen and absorbs 25 % of all CO2 emissions.

It also captures 90% of excess heat from these emissions

Goals of IPCC report can be met by ocean to remove more billion tons CO2 annualy to reach 1.5°C

#### Ocean to increase Food production vs. Ocean to remove more CO2 emissions

The role of AI, Data and Robotics is essential



#### Aquaculture Entire value chain

| Broodstock                                                   | Eggs                                                         | Feed                                                                                                                                         | Fish Biology                                                                                                                                                                          | Production<br>Systems                                                                                                                                                                                                                              | Environment<br>Impacts                                                                                                                                                          | Energy/<br>Transport                                                            | Circularity                                                                                             | Product                                                         | Stakeholder<br>Engagement                                                                         |
|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Monitoring<br>Biological<br>traits<br>Climate<br>predictions | Early<br>development<br>CRISPR<br>Environment<br>requirement | Production<br>sustainable<br>feed<br>ingredients<br>Fish<br>nutrition/<br>physiology<br>Functional<br>feeds<br>Feed<br>evaluation<br>Feeding | Development<br>Physiology<br>Neuroscience<br>Stress<br>Welfare<br>Health<br>Disease<br>Nutrition<br>Microbiome<br>Behaviour<br>Environment<br>Production<br>Biology<br>Digitalization | Semi-closed<br>containment<br>RAS<br>Open-cages<br>IMTA<br>Biological &<br>Environmental<br>assessments<br>Autonomous<br>operations &<br>control<br>Sensors, IoT<br>AI, Analytics<br>Drones<br>Location<br>assessments<br>Coastal zone<br>planning | Ecotoxicology<br>Climate<br>predictions<br>Wild fish<br>assessments<br>Location<br>impacts<br>Climate<br>footprint<br>Sea lice<br>Disease<br>Plastic<br>Sea floor<br>Microbiome | Optimization<br>Green Energy<br>Systems<br>Green<br>transportation<br>Logistics | Circular<br>economy<br>Waste to<br>value<br>LCA<br>Regional<br>impacts<br>Socio-<br>economic<br>impacts | Block-chain<br>Traceability<br>Consumer<br>confidence<br>Health | Consumer<br>confidence<br>Policy<br>Regional<br>planning<br>Consumer<br>engagement<br>Regulations |

#### Fish Aquaculture Sector Challenges

Expectations to produce 6 times more food from the ocean by 2050

 Blue Economy
3T\$ Market
Growing at double the rate of other sectors

urces: World Wildlife Fund, Forbes



- **Environmental limitations** 
  - Marine licenses and common space use
  - Waste from aquaculture
  - Genetic interactions with wild populations
- Feed sustainability
  - 3% uneaten feed in the cages
  - Alternative feed ingredients
- **Disease and parasite problems** 
  - Emerging new diseases especially viruses
  - Outbreaks of existing diseases
- Impacts of climate change on aquaculture
  - Regional changes and food security

## Aquaculture Sector Responses Closed & Integrated Production Systems



#### One Health approach and assess



Organism



- Healthy stock
- Minimal chemical hazards
- Bio-secure farms
- Safe farms
- Optimized farm systems



Environment

- Optimal water quality and usage
- Circularity and waste to value
- Protect biodiversity and natural capital

IN2TrustAl

- Low and renewable-energy use
- Low-spatial footprint



- Knowledge and skill generation
- Nutritious & safe food
- Equitable income generation
- Gender equalization
- Quality employment

## NORCE Aquaculture

Emerging technologies and Circularity

1: Sustainable feed ingredients

2: AI, Digital control, robotics, & automation

3: Fish biology and environment security

4: Waste capture and secondary production

5: Waste to value and circularity

6: Renewable energy solutions



#### Aquaculture Sector Responses Integration of green energy and development of waste value streams







**NBioC:** National Fermentation and Bioprocessing Centre (Stavanger)



NAM: National algae pilot Mongstad (Bergen)

#### Al, Data and Robotics: Monitoring, prognosis for asset management





We compute the time to maintenance.

## AI, Data and Robotics for Automated Biomass Control





Fish counting Fish biomass estimation

I-time

Rea

Cage density analysis



# Al, Data and Robotics: Smart Feeding

 $\epsilon$ : 0.5, mininum samples = 300





Growing from Phytoplankton micro-organisms

### **Marine snow**

To remove

1 billion ton of atmospheric CO2 annually

Courtesy <u>www.gea275.com</u> The Gea@275 project



# 8-14 GJ € 200 per ton <u>Actual Land-</u> based efforts

Marine snow 0,00024 GJ € 0,1 per ton





The role of AI, Data and Robotics is essential for Marine Snow control

Data: We need to collect large data

<u>**Robotics:**</u> Use sea drones to scan a large sea areas

<u>Al</u>: elaborate on marine snow condition, prediction and action for healthy growth



## I have a DREAM **Ocean for food security** @zero CO2 emissions Excellence Local fish feed production Automated biomass control Scientific Automated waste control

Automated security control Automated O&M

**Business opportunities** 

#### Food for everyone **Together for sustainability**

**Sustainable** Aquafood

Zero Hunger, zero emissions

AI, Data & Robotics for clean food production without experts



#### Food for everyone





Today (March 2023) tomatoes are between 6 – 12 Euro / Kilo

#### Tomato greenhouse at home

AI, Data & Robotics for clean food production without experts



### Aquafood: Food for everyone



Zero Hunger, zero emissions and together for sustainability





ADRA-e Impact of AI, Big Data and Robotics on CO2 reduction - Programme

# Thanks. Danke Takk. Kiitos.

# Merci. Gracias. Grazie. Obrigado.

ありがとうございました.謝謝你. धन्यवाद. じん

U: norceresearch.no



E: nabe@NORCEresearch.no